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Abstract

Hydraulic engine mount (HEM) is now widely used as a highly effective vibration isolator in automotive
powertrain. A lumped parameter (LP) model is a traditional model for modelling the dynamic
characteristics of HEM, in which the system parameters are usually obtained by experiments. In this
paper, a fluid–structure interaction (FSI) finite element analysis (FEA) method and a non-linear FEA
technology are used to determine the system parameters, and a fully coupled FSI model is developed for
modelling the static and lower-frequency performance of an HEM. A FSI FEA technique is used to
estimate the parameters of volumetric compliances, equivalent piston area, inertia and resistance of the fluid in
the inertia track and the decoupler of an HEM. A non-linear FEA method is applied to determine the dynamic
stiffness of rubber spring of the HEM. The system parameters predicated by FEA are compared favorably with
experimental data and/or analytical solutions. A numerical simulation for an HEM with an inertia track and a
free decoupler is performed based on the FSI model and the LP model along with the estimated system
parameters, and again the simulation results are compared with experimental data. The calculated time histories
of some variables in the model, such as the pressure in the upper chamber, the displacement of the free
decoupler and the volume flow through the inertia track and the decoupler, under different excitations, elucidate
the working mechanism of the HEM. The pressure distribution calculated with the FSI model in the chambers
of the HEM validates the assumption that the pressure distribution in the upper and lower chamber is uniform
in the LP model. The work conducted in the paper demonstrates that the methods for estimating the system
parameters in the LP model and the FSI model for modelling HEM are effective, with which the dynamic
characteristic analysis and design optimization of an HEM can be performed before its prototype development,
and this can ensure its low cost and high quality for development.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The automobile engine–chassis–body system may undergo undesirable vibrations due to
disturbances from the road and the engine. The vibrations induced by the road or the engine at
idle are typically at the frequencies below 30Hz. In order to control the idle shake and the road-
induced vibrations, the engine mount should be stiff and highly damped. On the other hand, for a
small amplitude excitation over the higher frequency range (30–250Hz) from the engine, a
compliant and lightly damped mount is required for vibration isolation and acoustic comfort. So,
the engine mount must satisfy these two essential but conflicting criteria. This disparity between
isolation characteristics and control characteristics has profoundly changed the way in which the
automobile industry approaches mount design.
A conventional rubber mount cannot satisfy the conflicting requirements simultaneously as the

lumped stiffness and the viscous damping are nearly invariant with excitation amplitudes and
frequencies over the concerned excitation range (1–250Hz). Consequently, at present,
manufactures have increasingly used hydraulic engine mount (HEM), whose stiffness and
damping characteristics can vary with excitation frequencies and amplitudes.
A typical HEM is illustrated in Fig. 1. At the top (A), the mount contacts the automobile

engine, and at the bottom (B) it connects with car chassis. The HEM contains two rubber
components (the rubber spring and rubber bellow), an upper and a lower fluid chamber, an inertia
track and a free decoupler. The fluid in the mount is usually water mixed with ethylene glycol. For
low-frequency and large-amplitude excitations from the road or from the engine at idle, the
rubber spring pumping action causes the free decoupler to reach the top or bottom constraint of
the decoupler cage, and the fluid is forced to flow back and forth between two chambers mainly
through the inertia track. Thus the HEM provide a large stiffness and damping at this time. For
high-frequency and small-amplitude excitation from the engine, fluid travels only around the
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Fig. 1. Cross-section of a HEM with a free decoupler and an inertia track.
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decoupler, and causes the mount to behave as an elastomeric mount. So, in this simple passive
isolation device, the stiffness and the damping are different for various excitation frequencies and
amplitudes.
A detailed discussion on engine vibration and desirable engine mount characteristics are

presented by Yu et al. [1,2]. The authors in Refs. [3–9] also present a complete literature survey on
the property descriptions and the modelling methods for HEMs with lumped parameter model.
Hence there is no need to re-convey what has been stated already. The focus now turns into the
method for obtaining the system parameters in the lumped parameter model. The method for
measuring fluid chamber compliances and inertia and resistance of the fluid in the inertia track are
presented by Kim and Singh [4]. Some analytical solutions for the compliance of the upper fluid
chamber with the rubber spring of regular configuration, and for the fluid resistance of the inertia
track are also given by Singh and Kim [5]. Muller [10] mentions that dynamic stiffness, upper fluid
chamber compliance and equivalent piston area can be calculated by FEA, but only a simple
model and some results are given. Foumani et al. [22] use finite element technique and ANSYS 5.7
to calculate the upper chamber compliance. The parameters of volumetric compliances, bulge
damping and equivalent piston area of the rubber spring are obtained experimentally by
Geisberger et al. [3], and the system parameters for the inertia track and decoupler are also
predicted by a unique experimental set-up and parameter identification technique. Moreover, they
provide a deep insight into the physics of a hydraulic mount. For most of these methods, a
prototype of one HEM and interrelated parts must be fabricated to estimate the system
parameters.
Instead, this paper applies fluid–structure interaction (FSI) finite element analysis (FEA) and

non-linear FEA to determine the system parameters. An FSI FEA technique is used to estimate
the upper fluid chamber compliance, the equivalent piston area, the inertia and the resistance of
the fluid in the inertia track and the free decoupler of an HEM. A non-linear FEA method is
applied to determine the dynamic stiffness of the rubber spring of the HEM. The estimated
parameters fit well with the experimental data and/or analytical solutions. Moreover, a fully
coupled FSI model is developed for modelling the static performance and lower-frequency
response of one HEM with an inertia track and a decoupler. With the methods proposed in this
paper, only stress–strain of the rubber material and the fluid constants, such as the density and
viscosity, and the sizes of the HEM are needed for estimating the system parameters in the LP
model and predicting the response of the HEM. To the best of the author’s knowledge, this is the
first time that FSI FEA techniques are used in the modelling of the HEM in detail. The static
performance of the HEM is analyzed with the FSI model. A numerical simulation for the HEM is
performed for the two cases of low-frequency and large-amplitude excitations with the LP model
and the FSI model, and high-frequency and small-amplitude excitations with the LP model. A
comparison between the calculation and the experiment proves that the methods proposed in this
paper are effective for the concerned excitation amplitude and frequency range of 1–200Hz. The
time histories of some variables in the model, such as the pressure in the upper chamber, the
displacement of the decoupler and the volume flow across inertia track and around the decoupler,
are also presented, which give us a better understanding of the working mechanism of HEM.
Enhancement of this paper to already published papers is that with the proposed methods for
modelling HEM, no prototype mounts and parts need to be manufactured in the design stages,
thus it will help engineers in reducing mount design time.
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2. Fundamental theory for FSI FEA

In FSI analysis, fluid forces are applied to the solid, and the solid deformation changes the fluid
domain. Difficulties of the FSI analysis arise not only because the governing equations for fluid
are non-linear, but also because the governing equations for fluid and structure are described in
different co-ordinates. With new algorithms for fluid FEA, such as SU/PG [11], GLS [12] and
Talor-Galerkin [13] et al., and the application of arbitrary Lagrangian–Eulerian (ALE) to the
Navier–Stokes (N–S) equations for fluid motion by Nomura, Hughes [14] and Bathe [15] et al.
since 1990, the large displacement boundary motion for fluid can be included in the calculation,
and this makes non-linear FSI FEA possible. At present, some commercial software, such as
ADINA [16], has strong capability for FSI analysis. The technique of FSI FEA and general
purpose programs have been used widely in the area of nuclear, offshore, biomechanics, aerospace
and aeronautics etc. [17].

2.1. Mathematical model

The solid response is modelled using the standard Lagrangian formulation for large
displacement and large strain. The governing field equations are

tij;j þ f B
i ¼ rs .ui; ð1Þ

where tij is the ijth components of the Cauchy stress tensor for (i; j ¼ 1; 2; 3), .ui the material
particle acceleration in the co-ordinate i direction, rs the mass density of the solid, f B

i the
component of the body force, and a comma is used to signify partial differentiation. The Ogden
material model for incompressible materials is used to describe the constitutive behavior of rubber
components in the HEM, such as the rubber spring and the rubber bellow. The model assumes a
strain energy density per unit original volume of the following form [18]

U ¼
X3
n¼1

mn

an

ðl�an

1 þ l�an

2 þ l�an

3 � 3Þ; ð2Þ

where

l1l2l3 ¼ 1 ð3Þ

an and mn are material constants determined from experiment, and li (i ¼ 1; 2; 3) is the principal
value of the stretch tensor. The procedures in determining an and mn are [18,19]: (1) Measure the
tensile and compress engineering stress–strain form dumbbell and cylinder specimen of the rubber
materials, respectively; if possible, carry out equibiaxial extension and shear tests. (2) Calculate
the engineering stress corresponding to the strain energy density U [19]. (3) Obtain an and mn by
fitting the engineering stress–strain obtained from experiment and calculation using least-squares
method.
The fluid response is modelled using the full N–S equations assuming incompressible flow. In

ALE form, the N–S equations are given in Refs. [14,16], that is
Continuity

ui;i ¼ 0 ð4Þ
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Momentum

r
@ui

@t
þ rðuj � umjÞ

@ui

@xj

¼
@tij

@xj

þ fi; ð5Þ

where r is the constant mass density of the fluid, ui is a component of velocity, umj is the velocity
of moving mesh and we may arbitrarily specify umj in the fluid domain, fi is a component of the
body force vector, and tij is the ijth component of the stress tensor defined as

tij ¼ �pdij þ mðui;j þ uj;iÞ; ð6Þ

where p is the fluid pressure, dij the Kronecker delta, and m the coefficient of viscosity.

2.2. Finite element solutions [16]

The boundary conditions applied to the fluid–structure interfaces are

df ¼ ds; ndsf ¼ ndss; ð7Þ

where df and ds are, respectively, the fluid and solid displacements, and sf and ss are, respectively,
the fluid and solid stresses. The underlining denotes that the values are defined on the fluid–
structure interfaces only.
After the finite element spatial discretization of the ALE N–S Eqs. (4)–(6) and solid Eqs. (1)–(3),

and application of the boundary conditions (7) to the discrete finite element equations of the fluid and
the structure, the coupled fluid-structure system equations are obtained and expressed as

FðXÞ ¼
Ff ½Xf ;dsðXsÞ�

Fs½Xs;sfðXfÞ�

" #
¼ 0; ð8Þ

where X ¼ ðXf ;XsÞ
T are the solution vectors of the coupled system, Xf and Xs the fluid and solid

vectors defined at the fluid and solid nodes, respectively, Ff and Fs the finite element equations
corresponding to the fluid and the structure model. In the ADINA program, we can choose direct
or iterative solution to Eq. (8). In this study, the direct method is adopted, since it is faster than
iterative method.
In FSI analysis with ADINA, the fluid model and the structure model are defined solely; the

interfaces between fluid and structure are defined as coupled faces. The two models can be meshed
with different elements and different sizes, the nodal point positions of the two models are
therefore generally not the same on the fluid–structure interfaces. In the coupled faces, the fluid
nodal displacements are interpolated using the solid nodal displacements, and the fluid traction at
a solid node is interpolated using the stress of the fluid boundary element where the solid node is
located. The coupling requires force equilibrium and velocity and displacement compatibility at
the fluid–structure interface at each time step in the analysis. To satisfy these conditions, iteration
is performed between the fluid and the solid solvers at each time step until sufficient convergence
has been reached [16].
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3. Lumped parameter model

Fig. 2 is the lumped parameter model for the HEM illustrated in Fig. 1 [3]. In Fig. 2, Kr andBr

are the dynamic stiffness and damping properties of the rubber spring, respectively. The rubber
spring also functions as a piston with an effective piston area Ap: Finally, the rubber spring adds
volumetric compliance to the model, represented by C1: The fluid in the inertia track is assigned
lumped parameters Ii; Ri1 and Ri2 representing the inertia, and linear and non-linear resistance,
respectively. Similarly, we assign lumped parameters Id ; Rd1 and Rd2 to the decoupler. The lower
chamber contributes to the volumetric compliance and is modelled using a lumped parameter C2:
Variables in the model include the input excitation xðtÞ; the transmitted force to the mount base
FðtÞ; and the flow through the inertia track QiðtÞ and the decoupler QdðtÞ: Also, the pressures in
the upper and the lower chambers are captured by P1ðtÞ and P2ðtÞ; respectively.
The dynamic equations for the lumped model in Fig. 2 can be derived easily according to

continuity and momentum equations. The continuity equations are [3,4]

C1 ’P1 ¼ Ap ’x � Qi � Qd ; C2 ’P2 ¼ Qi þ Qd : ð9Þ

The momentum equation of the fluid in the inertia track is [3,4]

P1 � P2 ¼ Ii
’Qi þ ðRi1 þ Ri2jQijÞQi: ð10Þ

The linear and non-linear resistance, Ri1 and Ri2; depend on the configuration and roughness of
the inertia track, and the viscosity of the fluid. They are difficult to estimate by analytical
solutions. The inertia Ii is defined as

Ii ¼ Mi=A2i ; ð11Þ
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Fig. 2. A lumped parameter model of HEM.
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where Mi and Ai are the fluid mass in the inertia track and the cross-section area of the inertia
track, respectively.
The moment equation of the free decoupler is [3,6]

P1 � P2 ¼ Id
’Qd þ ðRd1 þ Rd2jQd j þ Rinf ÞQd : ð12Þ

As with the inertia track, the decoupler inertia Id is assumed constant, and the free decoupler
resistance includes the linear and non-linear parameters, denoted by Rd1 and Rd2; respectively.
The constant Rinf in Eq. (12) depends on the position of the decoupler. When flow is oscillating
across the decoupler orifice, the decoupler is considered uncoupled and in this case, Rinf should be
zero. As the free decoupler reaches the top or bottom constraints of the cage, all flow across the
decoupler is blocked and the decoupler is considered coupled. In order to model this flow-
stopping effect, Rinf should be infinite for this moment. In this paper, we use a polynomial
expression to describe the behavior of the decoupler.

Rinf ¼ E
xd

D

� �g
; ð13Þ

where E is a positive constant, g is a positive odd constant, xd is the displacement of the decoupler,
D is the half-distance of the decoupler free travel gap.
Under the displacement excitation, xðtÞ; the transmitted force, F ðtÞ; is obtained from Ref. [3]

F ðtÞ ¼

Krx þ Br ’x þ ApðP1 � P2Þ þ ApP2 if the decoupler contacts the cage

Krx þ Br ’x þ ðAp � AdÞP1 þ ApP2 þ AdðRd1 þ Rd2jQd jÞQd if the decoupler is free

(

ð14Þ

The complex stiffness of the HEM at an excitation frequency o0 is expressed as [5]

KðoÞ ¼ FðF ðtÞÞ=FðxðtÞÞjo¼o0 ¼ Ks þ jKl ¼ Ks þ joD; ð15Þ

where F represents the Fourier transformations. Ks is the storage stiffness, Kl is the loss stiffness
and D is the damping coefficient. Dynamic stiffness Kd and loss angle f are defined as

Kd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

s þ K2
l

q
; f ¼ arctgðKl=KsÞ: ð16Þ

The dynamic properties of HEM are usually characterized by Kd ; and f or D:
The dynamic stiffness and the damping of the rubber spring are almost invariant with the

excitation amplitudes and frequencies, and the dynamic stiffness is about 1.2–1.6 times of its static
stiffness [20]. The loss angle of the rubber spring is small and is usually about 3–6	. So the
dynamic stiffness Kr and damping Br can be roughly regarded as constants. The lower chamber
compliance C2 depends on the thickness of the rubber bellow, which is very thin and about 2mm
in general. Hence the C2 is much larger than the C1; and we often set C2 ¼ C1 
 103: When the
configuration of the inertia track is regular, the inertia Ii can be obtained from the Eq. (11). The
system parameters Kr; C1; Ap; Ri1; Ri2; Id ; Rd1 and Rd2 are generally measured by experiments or
estimated with some approximation analytical solutions in Refs. [3–9]. But in this paper we use
non-linear FEA and FSI FEA technique to obtain the parameters.
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4. Determination of the system parameters in the lumped model

4.1. The dynamic stiffness of the rubber spring

Firstly, the static stiffness of the rubber spring is obtained with the non-linear FEA, and then
the dynamic stiffness is estimated from Ref. [20]

Kd ¼ fKs; ð17Þ

where Kd and Ks are the dynamic and static stiffness, respectively, and f is a correction factor that
is generally in the range from 1.2 to 1.6.
Fig. 3 is the cross-section of the rubber spring in an HEM. There is one metal inserter in the

rubber spring, which servers as load bearing. The deformation of the metal inserter can be ignored
compared with that of the rubber, so the inserter is generally excluded in the FEM model of the
rubber spring [21], and only the corresponding displacement constraint equations related to faces
A, B, C and D are imposed. The constraint conditions, that the nodal displacements in Z direction
on faces A, B, C and D are equivalent and the displacements in X and Y directions in these faces
are zero, must be assumed in the FEM model when the relationship of the vertical deflection and
the vertical force on the face A of the rubber spring is to be found. The outer face of the rubber
spring, the face E, is connected to one metal component fixed in the chassis, so all the nodal
displacements in the face are set to zero.
A complete three-dimensional structure of the rubber spring is modelled with the ADINA-M

module, and the FEM mesh is shown in Fig. 4. A Delauray mesher is used for generation of
elements on the geometry. The rubber spring is discretized by the 8/1 element (8-nodes hexahedral
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Fig. 3. Cross-section of the rubber spring.

Fig. 4. FEM model for the rubber spring.
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element with one pressure variable), and the maximum size for the element is 4mm. The total
nodes and elements in the FEM model are 9763 and 16171, respectively.
Ogden hyperelastic model with N ¼ 3 is used to characterize the highly non-linear and

incompressible rubber material. The experimental stress–strain curve shown in Fig. 5 is fit using a
standard least-squares approximation available in ADINA, which automatically determines the
appropriate Ogden model constants in Eq. (2). Fig. 5 shows that the fitting is accurate up to a
strain of 120%, which is adequate for analysis.
The force–displacement curves in Z direction obtained from FEM and experiment are shown in

Fig. 6. The calculated and tested static stiffness of the rubber spring are 290.3 and 279.2N/mm,
respectively, which agree well with each other.
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In estimating the other system parameters as follows, the material constitutive model for the
rubber spring and rubber bellow is 3-term Ogden model.

4.2. The upper fluid chamber compliance

The FSI finite element meshes for predicting the compliance are shown in Fig. 7, where 7376 8-
node elements (the 8/1 element) for the structure and 18,094 4-node elements for the fluid are used
to mesh the coupled system. The maximum size of the element for structure and fluid model is 6
millimeters, and the total number of nodes is 7847, which includes 4028 nodes for the structure
model and 3819 for the fluid model. The density and viscosity of the fluid are regarded as
constants. The interior faces of the rubber spring and the corresponding contacting faces in the
fluid model are defined as the FSI interfaces. A uniform velocity load, VL; is applied on the lower
face of the fluid model in 1 or 2 s as shown in Fig. 7(b). The other faces in the fluid model are
regarded as rigid walls without slip. The boundary conditions of the rubber spring are that
the nodal displacements on face A, B, C, D and E of the rubber spring are assumed to be zero in
the model.
The compliance C1 is defined as

C1 ¼ DV1=DP1; ð18Þ

where DV1 is the volume change of the upper chamber due to the pressure change, DP1: The
volume of the chamber, V1; is obtained from

V1 ¼ VLAt; ð19Þ

where A is the area of the bottom face of the fluid model, and t is the time for applying the velocity
load.
Under the velocity load, a pressure P1 is built up in the upper chamber since the fluid is

incompressible, and thus causes the rubber spring to bulge. The chamber pressure can be obtained
from the FSI FEA. Because the velocity load is applied in a relatively long period, the pressures of
all nodes in the fluid model are identical. For different velocity loads, the relationships between
the pressure and the volume of the upper chamber can be got by means of the method stated
above.
Fig. 8 shows the relationships between the pressure and volume in the upper chamber from

calculation and experiment. The experimental procedures for measuring the pressure versus
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Fig. 7. The FSI FEA models for upper chamber compliance. (a) The structural model. (b) The fluid model.
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volume relationships proposed by Kim etc. [4] are utilized in this study. The compliances from
experiment and FSI FEA are 1.65
 105 and 1.6
 105mm5/N, respectively, which indicates a
good agreement between the results.

4.3. The equivalent piston area

The FSI FEA meshes for estimating the equivalent piston area of the rubber spring are shown
in Fig. 9. The piston in the structural model is made of steel, and can move only in Z direction. It
has one rigid body mode, corresponding to the translation in Z direction. We remove this mode
by attaching the piston to ground using a soft spring with the stiffness of 1.0
 10�11N/m.
The contacting faces between the interior faces of the rubber spring and the faces in the fluid, and
the upper face of the piston and the bottom face of the fluid, are defined as FSI interfaces. The
other faces in the fluid models are rigid walls without slip. The boundary conditions of the rubber
spring in Fig. 9(a) are the same as those in Fig. 4.
A steady-state displacement load in Z direction, xr; is applied to the face A of the rubber spring,

and the piston displacement, xp; is obtained with the FSI FEA.
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Fig. 9. FSI FEA meshes for equivalent piston area. (a) The structural model. (b) The fluid model.
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The volume of the fluid chamber, Vr; is obtained from

Vr ¼ xpAp; ð20Þ

where Ap is the area of the piston upper face. The equivalent piston area is predicted by Vr=xr:
Since the piston is attached to the ground with a very soft spring, the pressure in the fluid is almost
zero under the displacement load, so that the rubber spring may not undergo bulge deformation.
The equivalent piston area versus the vertical displacement relationship of the rubber spring is

given in Fig. 10. It is shown that the area can be regarded as a constant when the vertical
displacement is larger than 2mm.
The upper chamber compliance can also be calculated from the FSI FEA model shown in

Fig. 9. We assign the boundary conditions of the rubber spring model in Fig. 7(a) to the rubber
spring model in Fig. 9(a). Then a steady state displacement load, S; in Z direction is applied to the
piston, and the volume of the chamber V1 is calculated from

V1 ¼ A 
 S; ð21Þ

where A is the area of the piston upper face. The pressure in the chamber is then estimated by FSI
FEA. For a sequence of displacement load, the chamber pressure versus volume relationships are
obtained. Eq. (18) is then used to calculate the chamber compliance. The compliance predicted
from the FSI FEA model in Fig. 9 is 1.61
 105mm5/N, and the experimental data is
1.65
 105mm5/N, which validates the FSI FEA model for estimating equivalent piston area.
Consequently, the calculated equivalent piston area of rubber spring is acceptable. Because a
piston is added to the structural model, the computing time of the model in Fig. 9 is longer than
that of the model in Fig. 7 for the compliance estimation.

4.4. The inertia and the resistance of the fluid in the inertia track

The inertia and the resistance can be obtained with the following procedures [3] if the pressure
differential of the two ends in the inertia track, DP ¼ P1 � P2; and the corresponding flow, Qi are
determined by calculation or experiment.
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The pressure differential, the flow and the derivative of the flow at time t are assigned to DPt;
Qt

i and
’Qt

i ; respectively. For a sequence of time denoted by 1,2,3,y, and n; the following moment
equations of the fluid in the inertia track are met.

DP1

DP2

y

DPn

2
6664

3
7775 ¼

’Q1i Q1i jQ1i jQ
1
i

’Q2i Q2i jQ2i jQ
2
i

y y y

’Qn
i Qn

i jQn
i jQ

n
i

2
66664

3
77775

Ii

Ri1

Ri2

2
64

3
75: ð22Þ

By assigning each matrix to the notation

Y ¼

DP1

DP2

y

DPn

2
6664

3
7775; U ¼

’Q1i Q1i jQ1i jQ
1
i

’Q2i Q2i jQ2i jQ
2
i

y y y

’Qn
i Qn

i jQn
i jQ

n
i

2
66664

3
77775; b ¼

Ii

Ri1

Ri2

2
64

3
75 ð23Þ

the least-squares parameter estimation is then applied using

b� ¼ ðUTUÞ�1UTY ; ð24Þ

where b� is the least-squares estimate of the parameters in b:
Geisberger, Khajepour and Golnaraghi [3] apply a unique experimental set-up to measure the

relationship between DPt and Qt
i ; and the parameter identification technique narrated above is

used to estimate the inertia and the resistance. In this study, we use FSI FEA technique to
determine the flow versus pressure relationships. The geometry models and the meshes of the FSI
FEA for the structure and the fluid are shown in Figs. 11 and 12, respectively. For the structural
model, the rubber bellow, the interior faces contacting the fluid are defined as FSI interfaces. The
upper face of the rubber bellow is fixed. The fluid model consists of the upper and the lower fluid
chambers, and the inertia track. A hole, the small face, in the bottom face of the upper chamber
connects with the entrance of the inertia track. The pressure load is applied to the top face of the
upper chamber. The other faces in the upper chamber are rigid walls without slip. The entrance
and the exit of the inertia track are linked with the exit of the upper chamber and the entrance of
the lower chamber with the command ‘Face Link’ of the ADINA. The remaining faces in the
inertia track are rigid walls without slip. The bigger face of the top face in the lower chamber is
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Fig. 11. The structural model to calculate the inertia and the resistance of the fluid in inertia track. (a) Geometry model.

(b) FEM model.
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rigid wall without slip, and the remaining faces contacting the rubber bellow are defined as FSI
interfaces.
In the FSI FEA, a pre-pressure, corresponding to the pressure in the HEM when it is subjected

to engine static load, is applied firstly, and then a random pressure is applied. The random
pressure and its spectrum are shown in Figs. 13(a) and (b), respectively. As Fig. 13(b) indicates
that the frequency spectral magnitude of the pressure excitation is within the concerned frequency
range (1–50Hz).
The calculated average pressure in the exit of the inertia track, P2; and the flow across the

inertia track are shown in Figs. 14 and 15, respectively. The average pressure in the entrance of the
inertia track, P1; is the same as the pressure load. Parameter estimation using the Eqs. (22)–(24)
identifies Ii ¼ 1:9084
 106 kg/m

4, Ri1 ¼ 10:2
 107 N s/m
5 and Ri2 ¼ 0:3140N s

2/m8. The inertia
Ii obtained from Eq. (11) is 2.08
 106 kg/m4, which is very close to the data from parameter
estimation.
The pressure load and the estimated pressure with the predicted system parameters and the

Eq. (10) are shown in Fig. 16. As seen from the figure, there is a good agreement between the
results.
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Fig. 12. The fluid model to calculate the inertia and the resistance of fluid in inertia track. (a) Geometry model.

(b) FEM model.
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Fig. 13. Pressure excitation. (a) Time history of the random pressure excitation. (b) Power spectral density of the

pressure excitation.
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4.5. The inertia and the resistance of the decoupler

If the decoupler moves freely, the moment equation will follow the form

P1 � P2 ¼ Id
’Qd þ ðRd1 þ Rd2jQd jÞQd ð25Þ

which is a reduced form of Eq. (12). The same technique for estimating the parameters of the
inertia track is utilized here for estimating the parameters of the decoupler.
The geometry models and the FSI FEA models of the structure and the fluid for calculating the

inertia and resistance of the free decoupler are shown in Figs. 17 and 18, respectively. The
structural model consists of a free decoupler and a rubber bellow, and the free decoupler is
regarded as a rigid body and can move only in Z direction. Only damping force acts on the
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decoupler when it moves within the gap, and if it contacts the cage, a very large force is applied
against the decoupler and forces it to stop. In order to describe the behavior of the decoupler, a
non-linear spring is used to attach the decoupler to the ground, and the stiffness of the spring has
the same expression as Eq. (13).
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(b) (a) 

Fig. 17. The structural model to calculate the inertia and the resistance of the free decoupler. (a) Geometry model.

(b) FEM model.

(a) (b)

Fig. 18. The fluid model to calculate the inertia and the resistance of the free decoupler. (a) Geometry model.

(b) FEM model.
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The fluid model in Fig. 18 consists of the upper and the lower chambers, and the pressure load
is applied to the top face of the upper chamber. The bottom face of the upper chamber contacts
the upper face of the decoupler, and it is defined as fluid–structure interface. The other faces in the
upper chamber are rigid walls without slip. For the lower chamber, the upper face contacting the
lower face of the decoupler, and the faces contacting the rubber bellow are defined as fluid–
structure interfaces. The remaining faces are rigid walls without slip.
The time history of the pressure loading is shown in Fig. 19. In comparison with the pressure

load in Fig. 13(a), the pressure is much smaller in order to guarantee the decoupler moves within
the free gap. Under the pressure load, the flow through the decoupler is estimated with the FSI
FEA and is shown in Fig. 20.
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The identified parameters using the Eqs. (22)–(24) are Id ¼ 1:32
 104 kg/m4,
Rd1 ¼ 3:8
 106 N s/m

5 and Rd2 ¼ 47:4N s
2/m8. The inertia Id obtained from the division of the

decoupler mass and its area is 0.5771
 104 kg/m4, and this value is much smaller than the data
from identification, which proves that the fluid column moving with the free decoupler has great
influence on the HEM’s characteristics in high-frequency [3,7].

5. Fully coupled FSI model

The geometry model and the mesh of the structure for the fully coupled FSI model of the HEM
with a free decoupler and an inertia track are shown in Fig. 21. The boundary conditions of the
rubber spring are the same as those in Fig. 4. The material constitutive model for the rubber
spring and rubber bellow is 3-term Ogden model. The behavior of the free decoupler is modelled
as the same as that described in Section 4.5. The upper and the low face of the free decoupler
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Fig. 21. The structure model. (a) Geometry model. (b) FEM model.
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contacting with the fluid are defined as FSI interfaces, and the other faces are rigid walls without
slip. The interior faces of the rubber bellow contacting the fluid are defined as FSI interfaces and
the upper face is fixed.
The fluid model is shown in Fig. 22. It consists of the upper and the low chambers and the

inertia track. A hole, the small face F1, in the low end of the upper chamber connects with
the entrance of the inertia track (face F4), and the face F2 in the low end of the upper chamber
contacting with the cage is defined as rigid wall without slip. The lowest face of the upper chamber
(face F3) contacting the upper face of the free decoupler is defined as FSI interface. The other
faces of the convex part under the face F1 or F2 contacting with the cage are described as rigid
walls. All the faces above the face F1 or F2 touching with the interior faces of the rubber spring
are defined as FSI interfaces.
The entrance (face 4) and the exit (face 5) of the inertia track are respectively linked with the

exit of the upper chamber (face 1) and the entrance of the lower chamber (face 6) with the
command of ‘Face Link’ of the ADINA. The remaining faces in the inertia track are rigid walls
without slip. The face F7 in the upper end of lower chamber contacting the cage is defined as rigid
wall without slip. The top face of the low chamber (F8) contacting with the bottom face of the free
decoupler is defined as FSI interface. The other faces of the convex part above the face F7 or F6

ARTICLE IN PRESS

Fig. 22. The fluid model. (a) Geometry model. (b) FEM model.
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contacting with the cage are described rigid walls. All the faces below the face F6 or F7 contacting
the interior faces of the rubber bellow are defined as FSI interfaces.
The structure model and the fluid model are meshed with 8/1 element (8-node hexahedron

element with one pressure variable) and 4/4 element (4-node tetrahedron element with four
pressure variables), respectively. The maximum size of the element for the structure and the fluid
model are 6 and 5mm, respectively, and the total numbers of element and node are 27,666 and
13,310, respectively, which includes 18,972 elements and 4615 nodes for the fluid model. The total
numbers of degree of freedoms are 53,236.

6. Simulation results of the HEM

6.1. Results of static analysis

The force versus displacement relations in the vertical direction of HEM obtained from FSI
model and experiment are shown in Fig. 23. As the figure indicates, the calculation result matches
measurement reasonably.
The deformation of the structure and the fluid pressure distribution are given in Fig. 24 when

the HEM bears the vertical preload of 2000N. As Fig. 24 illustrates, the pressure distribution in
the chamber and the inertia track is nearly uniform and a pre-pressure exists in the fluid under the
preload.

6.2. Results of dynamic analysis

Using the LP model in Section 3 along with the estimated parameters in Section 4 and the fully
coupled FSI model in Section 5, the simulated results and experimental data for the mount
behavior are compared over the frequency range of 1–200Hz. The predicted dynamic stiffness and
loss angle with the two models and the experimental data for low-frequency and large-amplitude

ARTICLE IN PRESS

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

F
or

ce
 (

N
)

Displacement (mm)

 Calculation
 Experiment

Fig. 23. The force versus displacement of the HEM.

W.-B. Shangguan, Z.-H. Lu / Journal of Sound and Vibration 275 (2004) 193–221212



excitation are shown in Fig. 25. As seen in the figure, the difference of the errors in dynamic
stiffness for LP model and FSI model is not obvious, whereas the loss angle estimated from the
FSI models is close to the experimental data. The high-frequency response of the HEM from
the LP model and experiment are shown in Fig. 26. The agreement of the frequency in peak loss
angle and the lowest frequency of the dynamic stiffness surging is significant.
The influence of the parameters on the dynamic stiffness and loss angle can be examined by

changing the parameters in the models, and so the performance optimization of the HEM can be
realized effectively.
Displacement-time histories of the free decoupler at 10Hz for 1.0mm amplitude excitation

estimated from the FSI model and the LP model are shown in Fig. 27. It can be seen that the
decoupler displacement from the two models is almost the same as that of its physical movement,
which demonstrates that the polynomial model for the decoupler is feasible in modelling the
dynamic performance of the HEM.
The calculated fluid flow through the inertia track and the decoupler from the LP model at

100Hz for 0.1mm amplitude excitation are shown in Fig. 28. As Fig. 28 shows, the fluid volume
through decoupler (Qd) is much larger than the fluid volume through the inertia track (Qi) for the
high-frequency excitation. For such excitations, the HEM often behaves like conventional rubber
mounts.
Under the excitation of 10Hz and 1.0mm, the estimated pressure distributions of the chambers

and the inertia track from the FSI model at different times are shown in Fig. 29.
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Fig. 24. The deformation of the structure and the fluid pressure. (a) Deformation of the structure. (b) Pressure

distribution (Pa).
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The calculated cross-sectional pressure distribution from the FSI model at different height of
the upper chamber for typical excitation frequencies and 1.0mm excitation amplitude is given in
Fig. 30. It can be concluded from Figs. 29 and 30 that the pressure distribution in the upper and
lower chamber is nearly uniform, which validates the assumption that the pressure distribution is
uniform in the chambers in the LP model. The pressure gradient in the inertia track is notable,
which is in coincidence with the mechanism of HEM.
The predicted average velocity of the cross-section of the inertia track and the velocity

distributions of horizontal cross-section of the inertia track at different time for 1.0mm amplitude
and 10Hz frequency excitation from the fully coupled FSI model are given in Figs. 31 and 32,
respectively. As Fig. 31 shows, the maximum velocity of the cross-section is 2.54m/s, whereas the
maximum value of the excitation velocity is 62.83
 10�3m/s. The fluid velocity of the inertia
track is enlarged by roughly 40 times, which is close to the ration of the equivalent piston area of
the upper chamber to the cross-sectional area of inertia track, 46.
The simulated upper chamber pressure from the LP model and/or FSI model and the

experiment data at 10Hz for1.0mm amplitude excitation, and at 100Hz for 0.2mm amplitude
excitation are indicated in Fig. 33. As Fig. 33(a) indicates, the pressure errors from the FSI model
is smaller than that of the LP model, which is predictable since the pre-pressure of the HEM under
the preload can be considered in the FSI model. The large errors between the estimated pressure
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from LP and experiment attribute to negligence of the pre-pressure of the P1ðtÞ in the lumped
model.

7. Concluding remarks

In this paper, we provide methods for predicting the system parameters in the lumped model of
a HEM by using non-linear FEA and FSI FEA and develop a fully coupled FSI model for
estimating the response of the HEM. The estimated parameters are compared favorably with the
experimental data and/or analytical solutions. The mount responses for both low- and high-
frequency excitations are predicted using the LP model along with the calculated system
parameters and/or the FSI model. The models predict dynamic stiffness of the HEM in low
frequency with less than 15% relative error. The relative error in loss angle with the LP model is
less than 20% when the excitation frequency is in the range of 5–20Hz, whereas the relative error
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in loss angle with the FSI model is less than 15% when the frequency is in 5–40Hz. For high-
frequency excitation, the peak frequency in loss angle and the lowest frequency for the dynamic
stiffness surging can be well predicted with the LP model. Discrepancies between the experiment
and results estimated from the LP model are attributed to the following factors: the assumptions
made with lumped parameter model assumption, the errors of the system parameters from FEA,
the limitation of the upper chamber compliance to static and the negligence of the bulge damping
parameter of the upper chamber compliance. Also, gas–liquid phase transformation and
cavitation phenomenon [3,4] are not captured in the lumped model.
The LP model and the fully coupled FSI model are used to model the performance; each model

has its pros and cons. The advantages of the FSI model over the lumped model are: the static
properties of the HEM can be estimated; the pressure distribution in the chambers and the inertia
track, and the velocity distribution of the inertia track can be predicted, which validates the
assumption of uniform pressure of the chambers in LP model; moreover the shape and size
optimization of the HEM can be performed with the FSI model. In the present FSI model, the
3-term Ogden constitutive model is used to characterize the behavior of the rubber spring. The
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constitutive model is only valid for modelling the behaviors of HEM for low-frequency and large-
amplitude excitations. New constitutive model for rubber spring, such as visco-hyperelastic or
finite linear visco-elasticity model, should be developed in order to simulate the HEM’s
performances at high-frequency and small-amplitude excitations. Up to now, no such models are
available in ADINA program. Fortunately, the use of HEM in automotive powertrain is mainly
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Fig. 29. Pressure distribution (Pa).
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Fig. 30. The pressure distribution at different height of the upper chamber cross-section (Pa).
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Fig. 32. The velocity distributions of horizontal cross-section of inertia track (m/s) (1mm, 10Hz).
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for isolating vibration from road or engine at idle at the low-frequency range (1–50Hz) and large
amplitude excitation (1–2mm). So only lower-frequency characteristics are required in the design
of the HEM. For high-frequency and small-amplitude excitations, the performance of HEM is
inferior to the conventional rubber mount since the HEM’s dynamic stiffness and loss angle are
larger than that of rubber mount. And in these cases, the function of the HEM should be limited.
The work presented here demonstrates that the methods for estimating the system parameters

from FEA and the developed fully coupled FSI model for modelling the HEM are feasible and
useful in analyzing and designing of hydraulic mounts. The advantage of the methods proposed in
this paper is that no mount prototype or related parts need to be made in the initial design stage,
thus the mount design time is greatly reduced. Future work should be carried on the simulation of
the high-frequency response of the HEM and performance optimization of the HEM with the FSI
model.
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